近日,实分析与调和分析及应用团队在J. Geom. Anal. 上发表了题为“A New Approach for Hardy Spaces on Euclidean Space”的研究论文。此论文浙江科技大学为唯一单位,2022级研究生黄友海为第一作者,房启全为论文通讯作者,陶祥兴、郑涛涛为共同作者。J. Geom. Anal. 是美国Mathematica Josephina出版公司和美国数学会联合出版的杂志,中科院二区TOP,影响因子1.2。
该工作中主要发展了一种新的方法去定义欧氏空间上的Hardy空间。文章通过引入了新的试验函数和分布,使用在L^2上经典的Calderon再生公式,构建小波表示,给出了调和分析中重要的经典Hardy空间的新的等价刻画。(数学系 郑涛涛 学科办 陈璟)
文章链接:https://doi.org/10.1007/s12220-024-01749-9
实分析与调和分析及应用团队:
团队在非标准奇异积分算子、函数空间刻画、积分算子巴拿赫代数等方向开展研究,获得了包括国家自然科学基金、浙江省自然基金等在内多个项目的资助。多项的创新性研究成果已发表在J. Geom. Anal., Forum Math.,Potential Anal., J. Fourier Anal. Appl., Banach J. Math. Anal., J. Math. Anal. Appl.等国际权威期刊上。
研究团队近一年来的代表性论文:
1. A new approach for Hardy spaces on Euclidean space, J. Geom. Anal. 34, 304(2024) (中科院2区, 数学类T2) https://doi.org/10.1007/s12220-024-01749-9
2. A bilinear sparse domination for the maximal singular integral operators with rough kernels, J. Geom. Anal., 34, 162(2024) (中科院2区, 数学类T2)
https://doi.org/10.1007/s12220-024-01607-8
3. On weighted compactness of commutators of Stein’s square functions associated with Bochner-Riesz means,J. Geom. Anal. 34, 332(2024) (中科院2区, 数学类T2)
https://doi.org/10.1007/s12220-024-01775-7
4. Lp(Rd) Boundedness for the Calderón Commutator with Rough Kernel, J. Geom. Anal., 34, 14(2023) (中科院2区,数学类T2)
https://doi.org/10.1007/s12220-022-01056-1
5. Rearrangement inequalities of the one-dimensional maximal functions associated with general measures, J. Geom. Anal., 33, 11(2023) (中科院2区, 数学类T2)
https://doi.org/10.1007/s12220-023-01406-7
6. Norm-controlled inversion in Banach algebras of integral operators, Banach J. Math. Anal., (2023) 17: 21. (中科院2区, 数学类T3)
https://doi.org/10.1007/s43037-022-00243-0
7. Weighted estimates for product singular integral operators in Journés class on RD-spaces, Forum Math., (2024) (中科院3区, 数学类T2)
https://doi.org/10.1515/forum-2023-0273
8. An endpoint estimate for the commutators of singular integral operators with rough kernels, Potential Anal.58 (2) (2023), 241-262. (中科院3区, 数学类T2)
https://doi.org/10.1007/s11118-021-09939-8
9. On the boundedness of non-standard rough singular integral operators, J. Fourier Anal. Appl., 30, 32(2024) (中科院3区, 应用数学类 T2)
https://doi.org/10.1007/s00041-024-10086-y
10. The Tb theorem for some inhomogeneous Besov and Triebel-Lizorkin spaces over space of homogeneous type. J. Math. Anal. Appl., 531(2024), no.1, Paper No. 127879.(中科院3区, 数学类T3)
https://doi.org/10.1016/j.jmaa.2023.127879