【廿周年院庆·和山数学论坛第401期】杭州电子科技大学喻高航教授学术报告

信息来源:   点击次数:  发布时间:2024-01-09

【廿周年院庆学术报告127 · 【和山数学论坛第401期】

 


一、报告题目:Efficient Randomized Algorithms for Low-Rank Approximation of Large Tensors

二、报告人:喻高航 教授

三、时 间:202419(周) 10:00-10:30

四、地 点:闻理园A3-217

 

报告摘要:Low-rank approximation of tensors has been widely used in high-dimensional data analysis. It usually involves singular value decomposition (SVD) of large-scale matrices with high computational complexity. Sketching is an effective data compression and dimensionality reduction technique applied to the low-rank approximation of large matrices. This talk presents some efficient randomized algorithms for low-rank tensor approximation  based on T-product, Tucker and Tensor Train decomposition, with rigorous error-bound analysis. Numerical experiments on synthetic and real-world tensor data demonstrate the competitive performance of the proposed algorithms.

 

报告人简介:喻高航,杭州电子科技大学西湖学者特聘教授、博士生导师,主要从事张量数据分析、大规模优化计算及其在机器学习、图像处理与医学影像中的应用研究。先后在SIAM Journal on Imaging Sciences, Journal of Mathematical Imaging and Vision, Journal of Scientific ComputingKnowledge-Based Systems, Expert Systems with Applications, IEEE Transactions on Computational Social Systems等国际期刊上发表50余篇SCI论文,先后主持5项国家自然科学基金、1项教育部新世纪优秀人才支持计划项目和1项浙江省自然科学基金重大项目有多篇论文入选ESI高被引榜单。现任国际SCI学术期刊Intelligent Automation & Soft Computing 的期刊编委和国际学术期刊Statistics, Optimization and Information Computing执行(Coordinating Editor)

 

欢迎广大师生参加! 联系人:杨晓燕