一、报告题目:A new quantity in Finsler geometry
二、报告人:莫小欢 教授
三、时 间:2025年1月13日(星期一)15:00—16:00
四、地 点:闻理园A4-216
报告摘要:In this lecture, we discuss a new Finslerian quantity $\hat{T}$ defined by the $T$-curvature and the angular metric tensor. We show that the $\hat{T}$-curvature not only gives a measure of the failure of a Finsler metric to be of scalar flag curvature and but also has vanishing trace. We find that the $\hat{T}$-curvature is closed related the Riemann curvature, the Matsumoto torsion and the ${\Theta}$-curvature. We answer Z. Shen's an open problem in terms of the $\hat{T}$-curvature. Finally, we give a global rigidity result for Finsler metrics of negative Ricci curvature on a compact manifold via the $\hat{T}$-curvature, generalizing a theorem previously only known in the case of negatively curved Finsler metrics with scalar flag curvature.
报告人简介:莫小欢,北京大学二级教授,博士生导师。1982年浙江师范大学本科毕业,1991年浙江大学博士毕业,1995年北京大学博士后出站后留校任教。长期从事几何学的研究和教学工作。主要研究兴趣是黎曼-芬斯勒几何学和几何变分学。曾在德国、法国、美国、意大利、巴西、匈牙利等国家进行学术访问和合作研究。已发表学术论文130余篇,论文引用达到766次。
欢迎大家踊跃参加!联系人:数学学科、数学与统计系