【和山数学论坛第130/131期】台湾中央大学林钦诚教授系列学术报告

信息来源:学院办公室   点击次数:  发布时间:2017-06-19

一、 题目: (1)Boundedness of Monge-Ampere singular integral operators acting on Hardy spaces and their duals

     2)A_{p, E} weights, maximal operators, and Hardy spaces associated with a family of general sets

二、主讲人:林钦诚

三、时 间:2017年6月19日午:15:10—16:10 

                        2017年6月20下午14:30--15:30

四、地 点:闻理园A4-216室

报告摘要:

   (1) We study the Hardy spaces H^p_F associated with a family F of sec- tions which is closely related to the Monge-Ampere equation. We characterize the dual spaces of H^p_F , which can be realized as Carleson measure spaces, Campanato spaces, and Lipschitz spaces. Also the equivalence between the characterization of the Littlewood-Paley g-function and atomic decomposition for H^p_F is obtained. Then we prove that Monge-Amp`ere singular operators are bounded from H^p_F into Lpμ and bounded on both H^p_F and their dual spaces.

  (2)我们考虑由一般集合族E所衍生的 A_p 理论、极大算子、Hardy空间、及其对偶BMO空间,然后证明Hardy空间的极大函数刻画

报告人简介:

林钦诚,台湾中央大特聘教授,美国乔治亚大学博士。曾任中央大数学系主任、数学理论中心主任、理院副院長已发表70高水平专业文,分別刊登于Adv. in Math., Math. Ann., Trans. AMS, J. Funct. Anal.等期刊。