科研论文
[1] Yaojun Ye, Lanlan Li, Global existence and blow-up of solutions for logarithmic Klein-Gordon equation, AIMS Mathematics, 2021, 6(7), 6898-6914.
[2] Yaojun Ye, Logarithmic viscoelastic wave equation in three-dimensional space,Applicable Analysis: 2021, 100(10), 2210-2226.
[3] Yaojun Ye. Local Existence and Blow-up of Solution for Nonlinear Higher-order Wave Equation (in Chinese). ACTA Math. Appl. Sin. 2021, 44(3):393-406.
[4] Yaojun Ye, Global existence and exponential decay for a viscoelastic Petrovsky system, Rocky Mountain Journal of Mathematics: 2019, 49(5), 1709-1724.
[5] Yaojun Ye, Xiangxing Tao. Initial boundary value problem for Higher-order Nonlinear Kirchhoff-type Equation (in Chinese). ACTA Mth. Sin. 2019, 62(6), 923-938.
[6] Yaojun Ye, Lanlan Li, Global Solutions and Blow-up for Systems of Damped Wave Equations (in Chinese). Adv. Math. 2022, 51(4):622-634.
[7]Yaojun Ye, Qianqian Zhu, Existence and nonexistence of global solutions for logarithmic hyperbolic equation. ERA, 2022, 30(3): 1035–1051.
[8] Yaojun Ye, Global existence and blow-up of solutions for a system of Petrovsky equations, Applicable Analysis: 2018, 96(16), 2969-2890.
[9] Yaojun Ye, Lanlan Li, Global existence and blow-up of solutions for logarithmic higher-order parabolic equation, Journal of nonlinear functional analysis, 2021(2021), 1-11.
[10] Yaojun Ye, Global solutions and self-similar solutions for coupled nonlinear Schrödinger equations, Math. Meth. Appl. Sci. 2017, 40(12): 4613–4624.
[11] Yaojun Ye Blow-up of Solutions for a System of Higher-Order Nonlinear Kirchhoff-Type Equations. Bull. Malays. Math. Sci. Soc. 2017, 40(3):665–677.
[12] Yaojun Ye, Global existence and blow-up of solutions for a system of Petrovsky equations. APPLICABLE ANALYSIS, 2017,96(16): 2869–2890.
[13] Yaojun Ye, Existence and Asymptotic Behavior of Global Solutions for Some Nonlinear Petrovsky System. Bull. Math. Soc. Sci. Math. Roumanie Tome 59 (107) No. 4, 2016, 389-398
[14] Yaojun Ye, Global existence and energy decay for a coupled system of Kirchhoff type equations with damping and source terms. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32(3): 1–8.
[15] Yaojun Ye, Existence and asymptotic behavior for systems of nonlinear hyperbolic equations, Appl. Math. J. Chinese Univ. 2015, 30(2): 453-465.
[16] Yaojun Ye, Global existence and asymptotic behavior of solutions for a system of higher-order Kirchhoff-type equations, Electronic Journal of Qualitative Theory of Differential Equations, 2015, No. 20, 1–12.
[17] Yaojun Ye,Global existence and blow-up of solutions for higher-order viscoelastic wave equation with a nonlinear source term,Nonlinear Analysis-Theory Methods & Applications, 2015, 112(1): 129-146.
[18] Yaojun Ye, Existence and nonexistence of global solutions for higher-order nonlinear viscoelastic equations, Zeitschrift fuÄr Analysis und ihre Anwendungen, 2014, 20(1): 21-41.
[19] Yaojun Ye,Global existence and nonexistence of solutions for coupled nonlinear wave equations with damping and source terms,Bull. Korean Math. Soc., 2014, 51(6):1697-1710.
[20] Yaojun YE, Existence and Decay Estimate of Global Solutions to Systems of Nonlinear Wave Equations with Damping and Source Terms. Abstract and Applied Analysis Volume 2013, Article ID 903625, 9 pages
[21] Yaojun YE, Global existence of solutions and energy decay for a Kirchhoff-typeequation with nonlinear dissipation. Journal of Inequalities and Applications 2013, 2013:195, 1-10.
[22] Yaojun Ye,Global existence and asymptotic behaviour for systems of nonlinear hyperbolic equations,Applicable Analysis, 2013, 92(11): 2424-2437.
[23] Yaojun Ye,Global existence and asymptotic stability for coupled nonlinear Klein–Gordon equations with nonlinear damping terms,Dynamical Systems, 2013, 28(2): 287-298.
[24] Yaojun Ye,Existence of Local Solutions of Nonlinear Wave Equations in n-Dimensional Space,Bull. Belg. Math. Soc. Simon Stevin, 2013, 20(11):245-252.
[25] Yaojun Ye,Global existence and energy decay estimate of solutions for a higher-order Kirchhoff type equation with damping and source term,Nonlinear Analysis: Real World Applications, 2013, 14(6): 2059-2067.
[26] Yaojun Ye,Exponential decay of energy for some nonlinear hyperbolic equations with strong dissipation,Advances in Difference Equations, 2010, 2010(5): 1-12.
[27] Lina Ji, Changzheng Qu and Yaojun YE, Solutions and symmetry reductions of the n-dimensional non-linear convection–diffusion equations. IMA Journal of Applied Mathematics, (2010) 75, 17−55.
[28] Yaojun YE, Global existence and asymptotic behavior of solutions for some nonlinear hyperbolic equation, Journal of Inequalities and Applications, Volume 2010, Article ID 895121, 10 pages.
[29] Yaojun YE, Existence and Asymptotic Behavior of Global Solutions for a Class of Nonlinear Higher Order Wave Equation, Journal of Inequalities and Applications, Vol. 2010, Article ID 394859, 14 pages.
[30] Yaojun Ye, Finite Energy Solutions for Systems of Semilinear Wave Equations in Three Space Dimensions (in Chinese). Adv. Math. 38(4) 2009, 397-402.
科研项目
1. 国家自然科学基金天元青年基金(A0324626) 分支、混沌理论及其在无穷维动力系统的应用 2003年10月至2004年11月,主要完成人.
2. 国家自然科学基金(10441002) 半线性发展方程的Cauchy问题及自相似解 2004年1月至2005年12月,主要完成人.
3. 河南省优秀中青年骨干教师资助项目 现代物理学中的一些色散波方程(I) 2005年1月至2007年12月,主持.
4. 河南省自然科学基金(200510466011) 非线性发展方程的调和分析方法,2005年1 月至2007年9月,主持.
5. 河南省自然科学基金(2007110013) 现代物理学中的一些色散波方程(II) 2007年1月至2009年10月,主持.
6. 非线性发展方程的整体适定性研究,浙江省自然科学基金(Y6100016),2010年6月至2013年6月,主持.
7. 国家自然科学基金面上项目,害虫综合治理与森林保护的数学模型问题研究,2013/01-2016/12,第二主持。
8. 浙江省自然科学基金项目,LY17A010009,非线性高阶发展方程的数学理论研究,2017/01-2019/12,主持
科研成果奖
1. 灰色系统理论及其应用,2001年中国高校科学技术二等奖,主要完成人。
2. 高校数字化校园建设模式探索与实践,2006年河南省教育科学研究优秀成果特等奖,主要完成人。
3. On the asymptotic property of solution for some nonlinear evolution equation of second order,河南省第九届自然科学优秀论文二等奖 第一名。
4. On the decay of solutions for some nonlinear hyperbolic equations,河南省第九届自然科学优秀论文二等奖 第一名
5. 一类带有弱耗散项的非线性双曲型方程解的衰减估计,河南省第九届自然科学优秀论文二等奖 第一名