代表性论文
[1] 胡燕波, Conservative solutions to a system of variational wave equations, J. Differential Equations 252 (2012) 4002-4026.
[2]胡燕波and Guodong Wang, Semi-hyperbolic patches of solutions to the two dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations 257 (2014) 1567-1590.
[3] 胡燕波, Conservative solutions to a one-dimensional nonlinear variational wave equation, J. Differential Equations 259 (2015) 172-200.
[4] 胡燕波, On the existence of solutions to a one-dimensional degenerate nonlinear wave equation, J. Differential Equations 265 (2018) 157-176.
[5] Fengyan Li(研究生) and 胡燕波, On a degenerate mixed-type boundary value problem to the 2-D steady Euler equation, J. Differ. Eq. 267 (2019) 6265-6289.
[6] 胡燕波and Jiequan Li, Sonic-supersonic solutions for the two-dimensional steady full Euler equations, Arch. Rat. Mech. Anal. 235 (2020) 1819-1871.
[7] 胡燕波and Jiequan Li, On a global supersonic-sonic patch characterized by 2-D steady full Euler equations, Adv. Differential Equations 25 (2020) 213-254.
[8]胡燕波and Jianjun Chen, Sonic-supersonic solutions to a mixed-type boundary value problem for the 2-D full Euler equations, SIAM J. Math. Anal. 53 (2021) 1579-1629.
[9] 胡燕波, C. Klingenberg and Yun-guang Lu, Zero relaxation time limits to a hydrodynamic model of two carrier types for semiconductors, Math. Ann. 382 (2022) 1031-1046.
[10]胡燕波, On a supersonic-sonic patch in the 3-D steady axisymmetric transonic flows, SIAM J. Math. Anal. 54 (2022) 1515-1542.
[11] Yongqiang Fan, Lihui Guo, 胡燕波 and Shouke You, Semi-hyperbolic patch characterized by 2D steady relativistic Euler equations, J. Differential Equations 354 (2023) 264-295.
[12] 胡燕波, Sonic-supersonic solutions for the two-dimensional steady compressible multiphase flow equations, J. Differential Equations 378 (2024) 626-677.
[13] Geng Chen, 胡燕波 and Qingtian Zhang, Initial-boundary value problems for Poiseuille flow of nematic liquid crystal via full Ericksen-Leslie model, SIAM J. Math. Anal. 56 (2024) 1809-1850.
[14] 胡燕波 and Houbin Guo, Singularity formation for the cylindrically symmetric rotating relativistic Euler equations of Chaplygin gases, Nonlinearity 37 (2024) No. 055006.
[15] 胡燕波, The solvability for a nonlinear degenerate hyperbolic parabolic coupled system arising from nematic liquid crystals, Canadian J. Math., 2023, doi: 10.4153/S0008414X23000640.
主持项目
1、浙江省自然科学基金青年项目,LQ13A010024,2013.1-2015.12,已结题
2、国家自然科学基金青年项目,11301128,2014.1-2016.12,已结题
3、中国博士后基金项目(一等),2015M580286,2015.9-2017.6,已结题
4、浙江省自然科学基金面上项目,LY17A010019,2017.1-2019.12,已结题
5、杭州市高层次留学回国人员创新项目,2020.1-2022.12,已结题
6、浙江省自然科学基金面上项目,LY21A010017,2021.1-2023.12,已结题
7、国家自然科学基金面上项目,12171130,2022.1-2025.12,在研