【物理格致论坛第66期】自旋-轨道角动量耦合作用超流费米气体中的角动量配对机制

信息来源:   点击次数:  发布时间:2020-04-14


一、题目自旋-轨道角动量耦合作用超流费米气体中的角动量配对机制

二、主讲人王亮亮

三、时间2020416日(星期四),下午15:00

四、报告方式:钉钉在线, 请扫码进群



内容摘要 Fulde-Ferrell-Larkin-OvchinnikovFFLO)态是具有有限动量库珀配对的奇特超导态[1,2]。由于新超导材料的发现,冷原子物理的发展,FFLO态的实验寻找和理论研究引起了人们极大的兴趣。最近,一种新型自旋轨道耦合作用,自旋-轨道角动量耦合在超冷原子气体中实现[3,4],为在角动量空间观测有限库珀配对的FFLO态提供了一种新的途径。在自旋-轨道角动量耦合作用和双光子失谐的共同作用下,超流费米气体中的费米面对称破缺,原子之间会倾向于非零的角动量中心配对,诱导出奇异的FFLO态。本工作拟探讨自旋-轨道角动量耦合在配对机制中的作用,验证非零角动量配对出现,为实现FFLO态提供新思路。


主讲人简介王亮亮,中科院物理所博士,西湖大学理学院助理研究员。主要从事的是自旋轨道耦合作用下的超冷费米气体研究,包括拓扑超流费米气体中Majorana 费米子,自旋-轨道角动量耦合作用下的超流配对机制,以及玻色-费米双超流体系。已经在Physical Review AOptics CommunicationsScientific Reports发表SCI论文 6[5-11]


参考文献

[1] P. Fulde and R. A. Ferrell, Superconductivity in a Strong Spin-Exchange Field.”, Phys. Rev. 135, A550 (1964).

[2] A. I. Larkin, and Yu. N. Ovchinnikov, “Nonuniform state of superconductors.”, Zh. Eksp. Teor. Fiz. 47, 1136 (1964).

[3] H.-R. Chen, K.-Y. Lin, P.-K. Chen, N.-C. Chiu, J.-B. Wang, C.-A. Chen, P.-P. Huang, S.-K. Yip, Y. Kawaguchi, and Y.-J. Lin, “Spin-orbital-angular-momentum coupled Bose-Einstein condensates”, Phys. Rev. Lett. 121, 113204(2018).

[4] D. Zhang, T. Gao, P. Zou, L. Kong, R. Li,X. Shen, X.-L. Chen, S.-G. Peng, M. Zhan, H. Pu, and K. Jiang, “Observation of quantum phase transition in spin-orbital-angular-momentum coupled Bose-Einstein condensate”, Phys. Rev. Lett. 122, 110402 (2019).

[5] Q. Sun, L.-L. Wang, X.-J. Liu, G. Juzeliunas, A.-C. Ji, “Larkin-Ovchinnikov superfluidity in time-reversal-symmetric bilayer Fermi gases”, Phys. Rev. A 99, 043601(2019).

[6] L.-L. Wang, Q. Sun, W.-M. Liu, G. juzeliunas, A.-C. Ji, “Fulde-Ferrell-Larkin-Ovchinnikov state to topological superfluidity transition in bilayer spin-orbit-coupled degenerate Fermi gases”, Phys. Rev. A 95, 053628(2017).

[7] L.-L. Wang, M. Gong, W.-M. Liu, “Multiple Majorana zero modes in atomic Fermi double wires with spin-orbit coupling”, Phys. Rev. A 96, 023623(2017).

[8] L.-L. Wang, C. Qian, C.-Q. Dai, J.-F. Zhang, “Analytical soliton solutions for the general nonlinear Schrodinger equation including linear and nonlinear gain(loss) with varying coefficients”, Optics Communications, 283, 4372 (2010).

[9] J.-H. Liu, D.-Y. Jing, L.-L. Wang, Y. Li, W. Quan, J.-C. Fang, W.-M. Liu, “The polarization and the fundamental sensitivity of 39K(133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers”, Scientific Reports, 7, 6776(2017).

[10] C.-Q. Dai, D.-S. Wang, L.-L. Wang, J.-F. Zhang, W.-M. Liu, “Quasi-two-dimensional Bose-Einstein condensates with spatially modulated cubic-quintic nonlinearities”, Annals of Physics, 326, 2356(2011).

[11] C.-Q. Dai, S.-Q. Zhu, L.-L. Wang, J.-F. Zhang, “Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrodinger equation with distributed coefficients”, EPL, 92, 24005 (2010).


欢迎广大师生参加。联系人:物理系 徐兴亮