【40周年校庆“学术理学”系列报告15】【和山数学论坛225期】图论专家学术报告

信息来源:   点击次数:  发布时间:2020-10-30

报告一: 

题目Edge connectivity, packing spanning trees, and eigenvalues of Graphs

主讲人:西北工业大学  王力工 教授

时间:2020年111() 8:30~9:30

腾讯会议ID429 594 328(会议密码:123456)

摘要

Let G be the set of simple graphs (or multigraphs) G such that for each G G there exists at least two non-empty disjoint proper subsets V1, V2 V (G) satisfying V (G) \ (V1 V2) ̸= ϕ and edge connectivity κ(G) = e(Vi, V (G)\Vi) for 1 i 2. A multigraph is a graph with possible multiple edges, but no loops. Let τ (G) be the maximum number of edge-disjoint spanning trees of a graph G. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of τ (G), we mainly give the relationship between the third largest (signless Laplacian) eigenvalue and the bounds of κ(G) and τ (G) of a simple graph or a multigraph G G, respectively.

个人简介: 王力工,西北工业大学教授、博士生导师,荷兰Twente大学博士,研究方向为图论及其应用。主持国家自然基金、省、部级基金5项,作为主要成员参加国家自然科学基金5项和陕西省自然科学基金1项。现为美国《数学评论》的评论员,在《Discrete Mathematics》、《Discrete Applied Mathematics》、《Electronic Journal of Combinatorics》、《Linear Algebra and its Applications》等国内外学术期刊发表SCI论文100余篇。是国家级精品课程《数学建模》课程和国家级教学成果一等奖的主要参加者。多次指导大学生和研究生参加国际、全国数学建模竞赛,获国际特等奖1项,国际一等奖6项、国际二等奖13项,全国一等奖5项,全国二等奖18项。曾被评为陕西省数学建模优秀指导教师和陕西省数学建模优秀组织工作者。曾被评为西北工业大学本科最满意教师。

 

报告二:  

题目Some results on the the spectral radius of a graph

主讲人:华东理工大学  郭继明 教授

时间:2020年111() 9:30~10:30

腾讯会议ID429 594 328(会议密码:123456)

摘要

Let G be a simple connected graph with n vertices and m edges. The spectral radius of G is the largest eigenvalue of its adjacency matrix. In this topic, we will give some new and old results on the spectral radius of a graph. At the end, three conjectures on the eigenvalues of the adjacency matrix of graphs are proposed.

 

个人简介: 郭继明,博士,华东理工大学数学系系主任,教授,博士生导师。研究方向为图论与组合数学, 在国内外杂志 《Linear Algebra and Its Applications》、《Discrete Applied Mathematics》、《Discrete Mathematics》、《Linear and Multilinear Algebra》、《Journal of Graph Theory》等上发表论文60余篇。先后主持国家自然科学基金面上项目多项。多次访问香港浸会大学。

 

 

报告三:

题目Characterizing the extremal graphs with respect to the eccentricity eigenvalues, and beyond

主讲人:华中科技大学  李书超 教授

时间:2020年111() 10:30~11:30

腾讯会议ID429 594 328(会议密码:123456)

摘要

Given a graph G, the eccentricity matrix E(G) is constructed from the distance matrix of G by keeping only the largest nonzero elements for each row and each column and leaving zeros for the remaining ones. In this talk we first focus on some elementary and non-trivial properties on this novel matrix. Then we characterize the extremal graphs with respect to the eccentricity eigenvalues (including the largest and smallest eigenvalues). As a consequence, we solve two conjectures proposed by Wang et al. (2018). Furthermore, we study the E-spectral determination of graphs. At last, for every ,  all graphs whose E-spectra are contained in the interval are characterized.

 

个人简介: 李书超,华中师范大学教授、博士生导师、南开大学博士。

2013年入选教育部新世纪优秀人才支持计划。主持完成的项目“图的几类不变量的研究”获湖北省自然科学奖三等奖。中国运筹学会理事, 湖北省运筹学会常务理事。

主要研究领域为组合数学、图论及应用。主持、完成并参与多项国家自然科学基金项目。

在EUROPEAN JOURNAL OF COMBINATORICS, JOURNAL OF COMBINATORIAL DESIGNS, JOURNAL OF COMBINATORIAL OPTIMIZATION, DISCRETE MATHEMATICS, DISCRETE APPLIED MATHEMATICS, ELECTRONIC JOURNAL OF COMBINATORICS, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, LINEAR ALGEBRA AND ITS APPLICATIONS, LINEAR & MULTILINEAR ALGEBRA, INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY等30余个国际SCI期刊发表论文120余篇。

 

 

欢迎广大师生参加! 联系人:龚世才,孙少伟