一、报告题目:Extrapolation and weighted estimates in Homogenization of Systems of Elasticity
二、报告人:耿俊 教授
三、时 间:2022 年 3 月 26 日 (周六)上午 9:50--10:30.
四、腾讯会议号:762-7964-8189
报告摘要: For a fixed bounded Lipschitz domain and a family of systems of linear elasticity with rapidly oscillating periodic coefficients, we investigate a necessary and sufficient condition that an $A_1$ weight $\omega$ must satisfy in order for the weighted $W^{1,2}(\omega)$ estimates for weak solutions of Neumann problems to be true. Moreover, in any Lipschitz domain, we prove that the uniform $W^{1,p}$ estimates for solutions to the Neumann problem hold for $\frac{2d}{d+1}-\delta<p<\frac{2d}{d-1}+\delta$. The ranges are sharp for $d=2, 3$. Finally, we prove an extrapolation result for $L^p$ Dirichlet problems for systems of linear elasticity.
报告人简介:耿俊,2011年获美国肯塔基大学博士学位,青年长江学者,现任兰州大学教授、博士生导师。主要从事非光滑区域上的椭圆边值问题和均匀化理论的研究。先后主持国家自然科学基金青年基金1项,面上项目2项。在SIAM J. Math. Anal.、 Arch. Ration. Mech. Anal.、Anal. PDE、J. Differential Equations、Proc. Amer. Math. Soc.、J. Funct. Anal.、Indiana Univ. Math. J.、Adv. Math..等国内外重要期刊发表多项高质量研究成果。
欢迎广大师生参加!,理学院应用数学研究所,联系人: 郑涛涛 。